

Journal of Organometallic Chemistry 649 (2002) 214-218

www.elsevier.com/locate/jorganchem

Synthesis and complexation of a new facultative tridentate S_2Te donor ligand MeS(CH₂)₃Te(CH₂)₃SMe: crystal structures of [Rh(Cp*)(S₂Te)][PF₆]₂ and [PtCl(S₂Te)]PF₆

Matthew Hesford, William Levason *, Simon D. Orchard, Gillian Reid

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

Received 20 November 2001; received in revised form 14 December 2001; accepted 14 December 2001

Abstract

The syntheses and spectroscopic characterisation of the new facultative tridentate tellurium containing ligands $MeS(CH_2)_3Te(CH_2)_3Te(CH_2)_3Te(CH_2)_3Te(CH_2)_3NH_2$ are described. The complexes of the former, *fac*-[Mn(CO)_3-(S_2Te)]CF_3SO_3, [Rh(Cp*)(S_2Te)][PF_6]_2, [MCl(S_2Te)]PF_6 (M = Pd or Pt), [Cu(S_2Te)]BF_4 and [Ag(S_2Te)]CF_3SO_3 have been prepared and characterised by analysis, IR, ¹H-, ¹³C{¹H}-, ¹²⁵Te- and ¹⁹⁵Pt-NMR spectroscopy and mass spectrometry. The X-ray crystal structures of [Rh(Cp*)(S_2Te)][PF_6]_2 and [PtCl(S_2Te)]PF_6 are described. The results are compared with those obtained from complexes of the related tridentates Te{(CH_2)_3TeR}_2, Se{(CH_2)_3SeMe}_2 and S{(CH_2)_3SR}_2. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Telluroether; Thioether; Rhodium; Platinum; Copper

1. Introduction

We are currently exploring the synthesis and metal complexation of acyclic polydentate and macrocyclic ligands containing tellurium [1–4]. Recent work has included the preparation of the first facultative tritel-luroethers $RTe(CH_2)_3Te(CH_2)_3TeR$ (R = Me or Ph) [5] and a variety of mixed donor macrocycles containing tellurium and sulphur, including 9, 11 and 12 membered ring S₂Te donor ligands [6]. In connection with these studies we prepared the new facultative tridentate 2,10-dithia-6-tellura-undecane,

MeS(CH₂)₃Te(CH₂)₃SMe and report here its synthesis and the preparation of some metal complexes which illustrate its coordination modes and allows comparisons with related Group 16 donor ligands. Relevant Group 16 ligands in addition to RTe(CH₂)₃Te(CH₂)₃-TeR [5], include MeS(CH₂)_nS(CH₂)_nSMe (n = 2 or 3) [7,8], MeSe(CH₂)_nSe(CH₂)_nSeMe [8,9] and RS(CH₂)₃S(CH₂)₃SR (R = Et, Ph or 'Pr) [10]. The dimethylene-linked $MeS(CH_2)_2Te(CH_2)_2SMe$, has been described, and is apparently unstable, with few complexes known [11]. The synthesis of a new N₂Te donor ligand is also described.

2. Experimental

Physical measurements were made as described elsewhere [1,3,5]. All preparations were carried out under dinitrogen.

2.1. $MeS(CH_2)_3Te(CH_2)_3SMe$

Finely ground tellurium powder (3.19 g, 0.025 mol) was added to a solution of NaOH (13 g) and Rongalite, $HOCH_2SO_2Na_2 \cdot 2H_2O$ (10 g) in water (50 ml) and the mixture refluxed for 30 min to produce a white suspension. A solution of Br(CH₂)₃SMe [7] (8.45 g, 0.05 mol) in EtOH (25 ml) was added and the mixture refluxed for 1.5 h, after which it was stirred at room temperature overnight. The mixture was extracted with Et₂O (3 × 25 ml) and the organic extract was dried over MgSO₄. Filtration and removal of the solvent in vacuo left a

^{*} Corresponding author. Tel.: +44-2380-593792; fax: +44-2380-593781.

E-mail address: wxl@soton.ac.uk (W. Levason).

red-orange oil: 6.2 g, 81%. Anal. Found: C, 31.2; H, 5.6. Calc. for $C_8H_{18}S_2$ Te: C, 31.4; H, 5.9%. ¹H-NMR (CDCl₃): 1.98 (quin, 2H, CH₂CH₂CH₂), 2.06 (s, 3H, SMe), 2.53 (t, 2H, SCH₂), 2.69 (t, 2H, CH₂Te). ¹³C{¹H}-NMR (CDCl₃): 1.5 (¹J_{Te-C} = 155 Hz, CH₂Te), 15.7 (MeS), 31.6 (CH₂S), 36.2 (CH₂CH₂CH₂). ¹²⁵Te{¹H}-NMR (CDCl₃): 238; (neat) 241. FABMS (3-NOBA); m/z: 308, 219; calc. for [$C_8H_{18}S_2^{130}$ Te]⁺ 308, [$C_4H_9S^{130}$ Te]⁺, 219.

2.2. $[Mn(CO)_3 \{MeS(CH_2)_3Te(CH_2)_3SMe\}]CF_3SO_3$

A solution of $[Mn(CO)_5Cl]$ (0.10 g, 0.43 mmol) in acetone (30 ml) was refluxed with AgCF₃SO₃ (0.11 g, 0.44 mmol) for 1 h to form a solution of $[Mn(CO)_3(Me_2CO)_3]CF_3SO_3$ and a precipitate of AgCl. The solution was transferred via a cannula to the ligand (0.13 g, 0.43 mmol). The solution was gently refluxed for 30 min, stirred overnight and then concentrated in vacuo to ca. 5 ml. Injection into ice-cold Et₂O (20 ml) precipitated a yellow–brown gum which was dried in vacuo: 0.22 g, 86%. IR (cm⁻¹, CH₂Cl₂): ν (CO) 2035, 1950. ES⁺MS (MeCN); m/z: 447; calc. for $[C_{11}H_{18}MnO_3S_{2}^{130}Te]^+$ 447. ¹H-NMR (CDCl₃): 2.3–4.0 (br,m). ¹³C{¹H}-NMR (CH₂Cl₂): 217 (br, CO), 39.2 (CH₂CH₂CH₂), 25.9 (MeS), 25.4 (CH₂S), 15.5 (CH₂Te). ¹²⁵Te{¹H}-NMR (CH₂Cl₂): 81. ⁵⁵Mn-NMR (CH₂Cl₂): $- 645. W_{1/2} = 1850$ Hz.

2.3. $[PdCl{MeS(CH_2)_3Te(CH_2)_3SMe}]PF_6$

A solution of $[PdCl_2(MeCN)_2]$ (0.08 g, 0.32 mmol) in MeCN (5 ml), the ligand (0.1 g 0.34 mmol) and TlPF₆ (0.13 g, 0.35 mmol) was stirred overnight, filtered through celite and reduced in volume to ca. 10 ml. This was added to ice-cold Et₂O (20 ml), and the precipitate separated and recrystallised from Me₂CO–Et₂O to give a yellow solid. 0.09 g, 43%. Anal. Found: C, 17.4; H, 3.0; calc. for C₈H₁₈ClF₆PPdS₂Te·1/4Et₂O: C, 17.7; H, 3.3%. IR (cm⁻¹): 830, 559 (PF₆), 313 (Pd–Cl). ¹H-NMR ((CD₃)₂CO): 1.98 (m, CH₂CH₂CH₂), 2.6(s, SMe), 2.9 (m, SCH₂), 3.4 (m, CH₂Te). ¹²⁵Te{¹H}-NMR (CH₂Cl₂): 379. ES⁺ Mass spectrum MeCN; *m/z*: 449; calc. for [C₈H₁₈³⁵Cl¹⁰⁶PdS₂¹³⁰Te]⁺ 449.

2.4. $[PtCl{MeS(CH_2)_3Te(CH_2)_3SMe}]PF_6$

PtCl₂ (0.05 g, 0.2 mmol) was refluxed in MeCN (30 ml) and when dissolution was complete, TlPF₆ (0.08 g, 0.21 mmol) was added followed by S₂Te (0.06 g, 0.2 mmol) and the mixture stirred for 18 h. The solvent was removed, the residue dissolved in acetone and filtered through celite. After reduction to ca. 5 ml, the product was precipitated with excess Et₂O: 0.05 g, 38%. Anal. Found: C, 14.6; H, 2.6; calc. for C₈H₁₈ClF₆PPtS₂Te: C, 14.1; H, 2.7%. IR (cm⁻¹): 838, 559 (PF₆), 306 (Pt–Cl).

¹H-NMR ((CD₃)₂CO): 2.6 (m, CH₂CH₂CH₂), 2.7, 2.85, 2.9 (SMe), 2.9 (m, SCH₂), 3.4 (m, CH₂Te). ¹²⁵Te{¹H}-NMR ((CH₃)₂CO): 356, 348. ¹⁹⁵Pt-NMR ((CH₃)₂CO, -80 °C): -3079, -3140. ES⁺ (MeCN); m/z: 537; calc. for [C₈H₁₈³Cl¹⁹⁵PtS₂¹³⁰Te]⁺ 538.

2.5. $[Rh(Cp^*){MeS(CH_2)_3Te(CH_2)_3SMe}][PF_6]_2$

A MeOH solution (15 ml) of [{Rh(Cp*)Cl₂}₂] (0.08 g, 0.13 mmol), TlPF₆ (0.20 g, 0.575 mmol) and the ligand (0.08 g, 0.26 mmol) was refluxed for 2 h. The TlCl precipitate was removed and the solution concentrated to ca. 5 ml and the product precipitated with excess Et₂O: 0.03 g, 29%. Anal. Found: C, 25.8; H, 3.8; calc. for C₁₈H₃₃F₁₂P₂RhS₂Te: C, 25.9; H, 4.0%. IR (cm⁻¹): 840, 560 (PF₆). ¹H-NMR ((CD₃)₂CO): 2.2 (m, CH₂CH₂CH₂), 2.6 (s, MeC), 2.73 (s, SMe), 2.8–3.4 (SCH₂ + CH₂Te). ¹²⁵Te{¹H}-NMR ((CH₃)₂CO): 191 (¹J_{Rh-Te} = 94 Hz). ¹³C{¹H}-NMR ((CH₃)₂CO): 106 (C₅), 36.8, 22.0 (CH₂CH₂CH₂), 25.0 (SMe), 22.0 (CH₂S), 9.1 (MeC), 14.0 (CH₂Te). ES⁺ (MeCN); *m/z*: 273; calc. for [C₁₈H₃₃RhS₂¹³⁰Te]²⁺ 273.

2.6. $[Cu\{MeS(CH_2)_3Te(CH_2)_3SMe\}]BF_4$

A CH₂Cl₂ solution (40 ml) of ligand (0.08 g, 0.25 mmol) and [Cu(MeCN)₄]BF₄ (0.08 g, 0.25 mmol) was stirred at room temperature for 1 h, then concentrated to ca. 5 ml and the product precipitated with Et₂O (30 ml): 0.09 g, 79%. Anal. Found: C, 23.2; H, 4.3; calc. for C₈H₃₃BCuF₄S₂Te·1/2MeCN: C, 22.7; H, 4.0%. IR (cm⁻¹): 2270 (MeCN), 1080 (BF₄). ¹H-NMR ((CD₃)₂CO): 1.98 MeCN, 2.2 (m, CH₂CH₂CH₂), 2.32 (s, SMe), 2.76 (m, SCH₂), 2.88 (m, CH₂Te). ¹²⁵Te{¹H}-NMR ((CH₃)₂CO): 99. $W_{1/2}$ = 700 Hz. ES⁺ (MeCN); m/z: 371; calc. for [C₈H₆₃⁶³CuS₂¹³⁰Te]⁺ 371.

2.7. $[Ag\{MeS(CH_2)_3Te(CH_2)_3SMe\}]CF_3SO_3$

AgCF₃SO₃ (0.09 g, 0.34 mmol) and ligand (0.10 g, 0.34 mmol) were stirred together in CH₂Cl₂ (30 ml) in the dark for 30 min. The solvent was reduced to ca. 10 ml, *n*-hexane (20 ml) added and the solution refrigerated to yield a white solid: 0.1 g, 64%. Anal. Found: C, 19.7; H, 2.6; calc. for C₉H₁₈AgF₃O₃STe: C, 19.2; H, 3.2%. ¹H-NMR (CD₂Cl₂): 1.90 (m, CH₂CH₂CH₂), 2.0 (s, SMe), 2.4 (m, SCH₂), 2.6 (m, CH₂Te). ¹²⁵Te{¹H}-NMR ((CH₃)₂CO): 136. ES⁺ (MeCN); *m*/*z*: 415; calc. for [C₈H₁₈¹⁰⁷AgS₂¹³⁰Te]⁺ 415.

2.8. H₂N(CH₂)₃Te(CH₂)₃NH₂

A solution of Na₂Te prepared as in 2.1 was treated with a solution of 3-chloropropylamine hydrochloride (Aldrich) (6.5 g, 0.05 mol) in EtOH (40 ml), refluxed for 3 h, cooled and extracted with Et₂O (4×25 ml). The organic layer was dried (MgSO₄), filtered, and the solvent removed in vacuo to yield an orange oil: 5.4 g, 89%. Anal. Found: C, 30.2; H, 6.9; N, 11.0. Calc. for C₆H₁₆N₂Te: C, 29.6; H, 6.6; N, 11.5%. ¹H-NMR (CDCl₃): 0.98 (s,br, 2H, H₂N), 1.64 (quin, 2H, CH₂CH₂CH₂), 2.42 (t, 2H, TeCH₂), 2.50 (t, 2H, CH₂N). ¹³C{¹H}-NMR (CDCl₃): 2.4 (¹J_{Te-C} = 156 Hz, CH₂Te), 38.8 (CH₂CH₂CH₂), 46.8 (NCH₂). ¹²⁵Te{¹H}-NMR (CDCl₃): 240. FABMS (3-NOBA); m/z: 246, 188; calc. for [C₆H₁₆N₂¹³⁰Te]⁺ 246, [C₃H₈N¹³⁰Te]⁺ 188.

2.9. X-ray crystallographic studies

Crystals were grown from vapour diffusion of Et_2O into acetone solutions of $[PtCl(S_2Te)]PF_6$ and $[Rh(Cp^*)(S_2Te)][PF_6]_2$. Crystallographic parameters are presented in Table 1. Data collection used an Enraf– Nonius Kappa CCD diffractometer operating at 120 K (Pt) or 150 K (Rh) with the data corrected for absorption by SORTAV [12]. For both structures, data solution and refinement were essentially routine [13,14]. For the platinum complex two independent cations and anions were identified in the asymmetric unit, and a higher symmetry cell could not be identified. One PF₆ group was disordered and this disorder was modelled reasonably successfully with split occupancies (65:35).

3. Results and discussion

The new ligand MeS(CH₂)₃Te(CH₂)₃SMe was prepared in good yield as an air-sensitive red-orange oil

Table 1					
Crystal	data	and	structure	refinement	parameters

	$[Rh(Cp^*)(S_2Te)]$ $[PF_6]_2$	[PtCl(S ₂ Te)]PF ₆
Empirical formula	$C_{18}H_{33}F_{12}P_{2}$ -	C ₈ H ₁₈ ClF ₆ PPtS ₂ -
	RhS_2Te	Te
Formula weight	834.01	681.45
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$
Unit cell dimensions		
a (Å)	10.4602(1)	9.8028(1)
b (Å)	19.5063(3)	27.4365(5)
<i>c</i> (Å)	13.5739(2)	13.5436(2)
β (°)	93.6330(9)	109.0450(9)
U (Å ³)	2764.05(6)	3443.23(7)
Ζ	4	8
μ (Mo–K _{α}) (cm ⁻¹)	20.07	103.12
Unique observed reflections	6476	7928
Observed reflections with	4196	5159
$[I_{o} > 2\sigma(I_{o})]$		
R	0.047	0.061
$R_{\rm w}$	0.056	0.064

 $R = \Sigma(|F_{\rm obs}|_i - |F_{\rm calc}|_i) / \Sigma |F_{\rm obs}|_i;$

 $R_{\rm w} = \sqrt{[\Sigma w_i(|F_{\rm obs}|_i - |F_{\rm calc}|_i)^2 / \Sigma w_i |F_{\rm obs}|_i^2]}.$

by reaction of Na₂Te with Br(CH₂)₃SMe in a 1:2 molar ratio in aqueous alkali–ethanol. The analogous reaction replacing Br(CH₂)₃SMe with Cl(CH₂)₃NH₃Cl gave the new N₂Te donor ligand 1,9-diaza-5-telluranonane, H₂N(CH₂)₃Te(CH₂)₃NH₂. Both ligands were thoroughly characterised by ¹H-, ¹³C{¹H}- and ¹²⁵Te-NMR spectroscopy, mass spectrometry and analysis. The NMR spectroscopic data provide clear evidence of the ligand structures, and no other significant Te-containing products were detected. However, attempts to carry out similar reactions using Br(CH₂)₃SH to make Te(CH₂CH₂CH₂SH)₂ gave a mixture of products which could not be separated since they decomposed on attempted chromatography.

Several complexes of MeS(CH₂)₃Te(CH₂)₃SMe were prepared to establish the coordination modes available, and to allow comparison with complexes of $RS(CH_2)_nS(CH_2)_nSR$, $MeSe(CH_2)_3Se(CH_2)_3SeMe$ and MeTe(CH₂)₃Te(CH₂)₃TeMe, so that the effects of changing the Group 16 donor atom(s) are revealed. Fac-[Mn(CO)₃{MeS(CH₂)₃Te(CH₂)₃SMe}]CF₃SO₃ was obtained as an orange gum by displacement of acetone from $[Mn(CO)_3(Me_2CO)_3]^+$. The *fac* geometry follows from comparison of the spectrum which exhibited two v(CO) modes 2035, 1950 cm⁻¹ with those of related tricarbonylmanganese cations [3,5]. The values may be with the corresponding compared values in $[Mn(CO)_3(L^3)]^+ L^3 = MeSe(CH_2)_3Se(CH_2)_3SeMe$ (2029, 1945) and MeTe(CH₂)₃Te(CH₂)₃TeMe (2014, 1936) [3,5]. The corresponding complex of $MeS(CH_2)_3$ - $S(CH_2)_3SMe$ has not been described but that of the dimethylene-linked MeS(CH₂)₂S(CH₂)₂SMe has v(CO)at 2047 and 1957 cm⁻¹ [3]. The fall in v(CO) along the series $MeS(CH_2)_2S(CH_2)_2SMe > MeS(CH_2)_3Te(CH_2)_3$ - $SMe \ge MeSe(CH_2)_3Se(CH_2)_3SeMe > MeTe(CH_2)_3Te$ $(CH_2)_3$ TeMe, shows the trend observed elsewhere [5,15] of increasing σ donation as Group 16 is descended. The ⁵⁵Mn-NMR chemical shifts show a slightly different order MeSe(CH₂)₃Se(CH₂)₃SeMe ($\delta = -560$) > MeS- $(CH_2)_3Te(CH_2)_3SMe$ $(\delta = -645) > MeTe(CH_2)_3Te$ - $(CH_2)_3$ TeMe ($\delta = -1338$), but here we cannot make comparison with the complex of MeS(CH₂)₂S(CH₂)₂-SMe since the ⁵⁵Mn chemical shifts are known to be sensitive to chelate ring size as well as donor atoms [3,15]. The chiral centres in the coordinated tridentate, generate several invertomers for $[Mn(CO)_3(L^3)]^+$, specifically two meso and a DL form which are NMR distinguishable if pyramidal inversion is slow [5,15], although not all forms need be present in significant amounts in a particular complex. In the case of the manganese complex of MeTe(CH₂)₃Te(CH₂)₃TeMe two invertomers were detected [5], but in the S₂Te complex only single ¹²⁵Te-and ⁵⁵Mn-NMR resonances were observed, which could be due to a single predominant isomer, but since inversion barriers at sulphur are much

Fig. 1. A view of the cation in $[Rh(Cp^*){MeS(CH_2)_3-Te(CH_3)_3SMe}][PF_6]_2$. H atoms omitted for clarity.

Table 2

Selected	bond	lengths	(Å)	and	bond	angles	(°)	for
$[Rh(Cp^*){$	MeS(CH	I ₂) ₃ Te(CH	I_2 ₃ SM	e}][PFe	5]2			

Bond lengths Rh(1)–Te(1)	2.6106(7)	Rh(1)–S(1)	2.364(2)
Rh(1)–S(2) Te(1)–C(4)	2.368(2) 2.157(8)	Rh(1)–C(Me) Te(1)–C(5)	2.178(7)–2.232(8) 2.140(8)
Bond angles Te(1)-Rh(1)-S(1) S(1)-Rh(1)-S(2)	93.14(5) 90.78(6)	Te(1)-Rh(1)-S(2)	88.23(5)

Table 3

Selected bond lengths (Å) and bond angles (°) for $[PtCl\{MeS(CH_2)_3Te(CH_2)_3SMe\}]PF_6$

Bond lengths			
Pt(1)-Te(1)	2.5258(11)	Pt(2)–Te(2)	2.5191(12)
Pt(1)–S(1)	2.310(4)	Pt(2)–S(3)	2.304(4)
Pt(1)–S(2)	2.288(4)	Pt(2)–S(4)	2.291(4)
Pt(1)-Cl(1)	2.358(4)	Pt(2)Cl(2)	2.351(4)
Bond angles			
Te(1)-Pt(1)-Cl(1)	174.39(11)	Te(2)-Pt(2)-Cl(2)	175.73(12)
Te(1)-Pt(1)-S(1)	90.57(12)	Te(2)-Pt(2)-S(4)	91.26(11)
Te(1)-Pt(1)-S(2)	97.69(10)	Te(2)-Pt(2)-S(3)	97.39(11)
Cl(1)-Pt(1)-S(1)	87.9(2)	Cl(2)-Pt(2)-S(3)	86.3(2)
Cl(1)-Pt(1)-S(2)	83.9(1)	Cl(2)-Pt(2)-S(4)	84.9(2)
S(1)-Pt(1)-S(2)	171.7(1)	S(3)-Pt(2)-S(4)	170.2(2)

lower than at tellurium [3], fast pyramidal inversion (on the NMR timescale) is likely.

The $[Rh(Cp^*){MeS(CH_2)_3Te(CH_2)_3SMe}][PF_6]_2$ was readily made from [{Rh(Cp*)Cl₂}₂], TlPF₆ and the ligand in methanol. The X-ray crystal structure of this complex shows a *fac* octahedral geometry with the S_2Te ligand in the DL form (Fig. 1). The bond lengths and angles (Table 2) may be compared with those in $[Rh(Cp^*){(PhTe(CH_2)_3Te(CH_2)_3TePh}][PF_6]_2$ [5] which also contained the DL invertomer. The d(Rh-Te) in the present case, 2.6106(8) Å, is identical with that in the tritelluroether complex (2.6016(7) Å), and the d(Rh-S)2.364(2), 2.368(2) Å are much as expected. The Rh–C distances 2.207 Å (av) are also very similar to those in the tritelluroether complex [5]. In solution the ¹²⁵Te-NMR spectrum contains a single broad doublet at $\delta = 191 ({}^{1}J_{Rh-Te} = 94 Hz)$, the coupling constant being typical for ${}^{1}J(Rh(III)-Te)$ [2,5]. The ${}^{1}H$ - and ${}^{13}C{}^{1}H$ -NMR spectra show only single resonances for the -SMe groups, again almost certainly due to fast inversion at sulphur.

The reaction of the ligand with $[MCl_2(MeCN)_2]$ (M = Pd or Pt) and TlPF₆ in a 1:1:1 ratio gave planar [MCl{MeS(CH₂)₃Te(CH₂)₃SMe}]PF₆, the structure being confirmed for the platinum complex by an X-ray crystallographic study. The structure revealed two independent cations and anions in the asymmetric unit, with one of the PF₆ groups disordered. The small differences between the two cations (Table 3) are not chemically significant, and only one is shown in Fig. 2. The structure shows a planar cation with the DL form of the ligand, and with only small deviations from a regular geometry with unexceptional bond lengths, viz. Pt-Cl_{trans Te} = 2.354 Å (av), Pt-S_{trans S} = 2.30 Å (av), and Pt-Te_{trans Cl} = 2.522 Å (av). These may be com-

Fig. 2. A view of one of the independent cations in [PtCl{MeS(CH₂)₃Te(CH₂)₃SMe}]PF₆. H atoms omitted for clarity.

pared with Pt–Cl_{trans Te} = 2.336(3) Å and Pt–Te_{trans Cl} = 2.514(1) Å in *cis*-[PtCl₂(EtOC₆H₄TeCH₂CH₂SMe)] [16], and Pt–S_{trans S} = 2.304 Å (av) in [PtCl{^{*i*}PrS-(CH₂)₃S(CH₂)₃S^{*i*}Pr}]BF₄ [10].

Pyramidal inversion at thioethers coordinated to palladium(II) is usually rapid on the NMR time-scales at room temperature [17], and this is clearly the case for $[PdCl{MeS(CH_2)_3Te(CH_2)_3SMe}]PF_6$ which shows a singlet in the ¹²⁵Te{¹H}-NMR spectrum at $\delta = 279$, a high frequency coordination shift of 140 ppm, and a single δ (MeS) in the ¹H-NMR spectrum. The NMR spectra obtained from $[PtCl{MeS(CH_2)_3Te(CH_2)_3-}$ SMe}]PF₆, however, are more complex: the 1 H-NMR at 300 K shows three rather broad δ (SMe) resonances and complex overlapping CH₂ resonances, with illdefined ¹⁹⁵Pt satellites suggesting a system approaching coalescence. The ¹²⁵Te{¹H}-NMR spectrum at 300 K showed two very broad resonances consistent with the presence of meso and DL invertomers, the averaged coordination shift (ca. 113) being smaller than in the palladium analogue. No ¹⁹⁵Pt-NMR spectrum was observed at room temperature, but on cooling the solution two resonances at -3071, -3140 were observed, which are consistent with the two invertomers expected. The chemical shifts for this PtTeS₂Cl system (ca. – 3100), seem reasonable compared with PtSe₃Cl (ca. -3700 [18] and PtTe₃Cl (ca. -3900) [5].

The S₂Te ligand reacted with $[Cu(MeCN)_4]BF_4$ or AgCF₃SO₃ to give white complexes $[Cu(S_2Te)]BF_4$ and $[Ag(S_2Te)]CF_3SO_3$. Neither complex gave crystals suitable for X-ray studies and hence the structures are unclear, although probably oligomeric [6]. The ¹H-NMR spectra are simple showing resonances only little shifted from those of the 'free' ligand, and singlet ¹²⁵Te-NMR resonances to low frequency of the ligand resonance. Low frequency ¹²⁵Te-NMR shifts and very small ¹H-NMR coordination shifts are typical of group 16 donor ligand complexes of these two d¹⁰ metal centres [19,20].

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 173953 and 173954 for [PtCl(S₂Te)]PF₆ and [Rh(Cp*)(S₂Te)][PF₆]₂, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

We thank the EPSRC for research studentships (S.D.O. and M.H.) and Professor M.B. Hursthouse for access to the Kappa CCD diffractometer.

References

- W. Levason, S.D. Orchard, G. Reid, Inorg. Chem. 39 (2000) 3853.
- [2] W. Levason, S.D. Orchard, G. Reid, J.M. Street, J. Chem. Soc. Dalton Trans. (2000) 2537.
- [3] J. Connolly, A.R.J. Genge, W. Levason, S.D. Orchard, S.J.A. Pope, G. Reid, J. Chem. Soc. Dalton Trans. (1999) 2343.
- [4] W. Levason, S.D. Orchard, G. Reid, J. Chem. Soc. Dalton Trans. (2000) 4450.
- [5] A.J. Barton, W. Levason, G. Reid, A.J. Ward, Organometallics 20 (2001) 3644.
- [6] W. Levason, S.D. Orchard, G. Reid, J. Chem. Soc. Chem. Commun. (2001) 427.
- [7] R. Ali, S.J. Higgins, W. Levason, Inorg. Chim. Acta 84 (1984) 65.
- [8] E.W. Abel, K. Kite, P.S. Perkins, Polyhedron 5 (1986) 1459.
- [9] D.J. Gulliver, E.G. Hope, W. Levason, S.G. Murray, D.M. Potter, G.L. Marshall, J. Chem. Soc. Perkin Trans. 2 (1984) 429.
- [10] S.J. Loeb, J.R. Mansfield, Can. J. Chem. 74 (1996) 1377.
- [11] M. Misra, A.K. Singh, Phosphorus, Sulfur, Silicon, Relat. Elem. 134–135 (1998) 537.
- [12] (a) R.H. Blessing, Acta Crystallogr. Sect. A. 51 (1995) 33;
 (b) R.H. Blessing, J. Appl. Crystallogr. 30 (1997) 421.
- [13] PATTY, The DIRDIF Program System, P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C. Smykalla, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [14] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corporation, Texas, 1995.
- [15] W. Levason, S.D. Orchard, G. Reid, Organometallics 18 (1999) 1275.
- [16] A.K. Singh, V. Srivastava, S.K. Dhingra, J.E. Drake, J.H.E. Bailey, Acta Crystallogr. Sect. C. 48 (1992) 655.
- [17] E.W. Abel, S.K. Bhargava, K.G. Orrel, Prog. Inorg. Chem. 32 (1984) 1.
- [18] E.G. Hope, W. Levason, S.G. Murray, G.L. Marshall, J. Chem. Soc. Dalton Trans. (1985) 2185.
- [19] J.R. Black, W. Levason, J. Chem. Soc. Dalton Trans. (1994) 3225.
- [20] J.R. Black, N.R. Champness, W. Levason, G. Reid, J. Chem. Soc. Dalton Trans. (1995) 3439.